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FIG. 5
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FIG. 7
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FIG. 8
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1
AUTOMATED 3D RECONSTRUCTION OF
THE CARDIAC CHAMBERS FROM MRI OR
ULTRASOUND

INCORPORATION BY REFERENCE TO ANY
PRIORITY APPLICATIONS

This application claims priority U.S. Provisional Appli-
cation No. 62/073,688 filed on Oct. 31, 2014. Any and all
applications for which a foreign or domestic priority claim
is identified in the Application Data Sheet as filed with the
present application are hereby incorporated by reference
under 37 CFR 1.57.

BACKGROUND

Cardiac magnetic resonance imaging (CMR) is a valuable
tool that provides important information for diagnosis and
evaluation of cardiac anatomic abnormalities, and cardio-
vascular disease (Frangi A F, Niessen W J, Viergever M A.
Three-dimensional modeling for functional analysis of car-
diac images, a review. Medical Imaging, IEEE Transactions
on 2001; 20(1):2-5). CMR is a safe modality that does not
require ionizing radiation or iodinated contrast but delivers
images with high spatial and temporal resolution (Yuan C,
Kerwin W S, Ferguson M S, et al. Contrast-enhanced high
resolution MRI for atherosclerotic carotid artery tissue char-
acterization. Journal of Magnetic Resonance Imaging 2002;
15(1): 62-67; Lima J A, Desai M Y. Cardiovascular magnetic
resonance imaging: current and emerging applications. Jour-
nal of the American College of Cardiology 2004; 44(6):
1164-1171). One important aspect of CMR imaging is its
potential for segmentation of the cardiac chambers to deter-
mine clinical information such as ejection fraction and
chamber volumes (Heimann T, Meinzer H-P. Statistical
shape models for 3D medical image segmentation: A review.
Medical Image Analysis 2009; 13(4): 543-563). Currently
many of the commercially available software platforms for
CMR post-processing either provide suboptimal automated
segmentation or require a substantial amount of manual
segmentation support from the user, resulting in significant
methodological variability (Janik M, Cham M D, Ross M I,
et al. Effects of papillary muscles and trabeculae on left
ventricular quantification: increased impact of methodologi-
cal variability in patients with left ventricular hypertrophy.
Journal of hypertension 2008; 26(8):1677-1685). Addition-
ally, manual segmentation is time consuming, and requires
dedicated operator training that makes it inefficient due to
the extent of information in CMR images.

Most cardiac segmentation techniques treat “2D segmen-
tation” and “3D multiplanar reconstruction” as two separate
processes (Jolly M-P. Automatic segmentation of the left
ventricle in cardiac MR and CT images. International Jour-
nal of Computer Vision 2006; 70(2): 151-163). These pro-
cesses achieve volumetric reconstruction by first applying a
2D segmentation approach independently for each slice, and
then volumizing these 2D segmented image stacks into 3D
objects. This procedure only considers volumizing a par-
ticular stack. Therefore, some important details of the object
would be lost during the procedure; thus the resultant objects
usually possess rough surfaces.

Although there are some methods to automate consecu-
tive “2D segmentation” and “3D multiplanar reconstruc-
tion” steps, this approach fails to exploit the benefit of a true,
3D volumizing technique. Additionally, most segmentation
approaches in 2D cannot readily handle cases where an
object of interest (e.g., papillary muscles) appears to be
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separated into several cross-sections (i.e., non-convex
object). This separation and discontinuity commonly can be
seen in CMR images, which incur further challenges in 2D
segmentation.

The need for an efficient, accurate, and automated seg-
mentation method has stimulated a large body of work in
automated 3D CMR segmentation. Among these studies,
early attempts at thresholding (Goshtasby A, Turner D A.
Segmentation of cardiac cine MR images for extraction of
right and left ventricular chambers. Medical Imaging, IEEE
Transactions on 1995; 14: 56-64) were followed by the
popular pixel classification (Pednekar A, Kurkure U, Muth-
upillai R, Flamm S, Kakadiaris I A. Automated left ven-
tricular segmentation in cardiac MRI. Biomedical Engineer-
ing, IEEE Transactions on 2006; 53(7): 1425-1428; Lynch
M, Ghita O, Whelan P F. Automatic segmentation of the left
ventricle cavity and myocardium in MRI data. Computers in
Biology and Medicine 2006; 36(4): 389-407), active contour
approaches (Xu C, Pham D L, Prince J L. Image segmen-
tation using deformable models. Handbook of medical imag-
ing 2000; 2:129-174; Grosgeorge D, Petitjean C, Caudron J,
Fares J, Dacher J-N. Automatic cardiac ventricle segmen-
tation in MR images: a validation study. /nternational jour-
nal of computer assisted radiology and surgery 2011; 6(5):
573-581) and region based approaches (Grosgeorge et al.
(supra); Mule J, Bone R, Makris P, Cardot H. Segmentation
and tracking of the left ventricle in 3D MRI sequences using
an active surface model. In Computer-Based Medical Sys-
tems, Twentieth IEEE International Symposium on; 2007. p.
257-262). However, none of these singular approaches has
resulted in an accurate and fast segmentation algorithm that
requires no prior statistical model.

SUMMARY OF THE INVENTION

Disclosed are a new and useful apparatus and method for
reconstructing cardiac chambers in 3D using an MRI or
ultrasound image. Specifically, the methodologies utilize a
segmentation algorithm, which automatically reconstructs
raw cardiac MRI or Ultrasound data to a 3D model (i.e.,
direct volumetric segmentation), without relying on any
prior statistical knowledge, making it widely applicable and
useful for many clinical applications.

Some embodiments relate to a method of automatically
producing a three-dimensional (3D) segmentation of a heart
chamber, the method comprising:

(a) obtaining data sets from cardiac magnetic resonance

imaging (MRI) or ultrasound,

(b) generating a 3D segmentation of the heart chamber

from the data sets using an active contour method,

(c) modifying the 3D segmentation by adding a plurality

of intra-chamber structures; and

(d) identifying an enclosing myocardium using the 3D

segmentation generated in step (b).

In some methods, generating the 3D segmentation of the
heart chamber from the MRI or ultrasound data sets includes
minimizing an energy function, E(®), when a contour lies on
a boundary of the heart chamber, wherein E(®) is defined as

E(D)=E; { DIH+E o D),

wherein E,,, is the internal energy function and E__, is the
external energy function of the heart chamber in a 3D
domain.
In some embodiments, minimizing the energy function,
E(®) includes using an external energy function, E_ (®),
defined as

E (D)W B AW E ot WaEig e
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wherein E,,, is a region-based term, B, is an edge-
based term, B, is a geometric term, and where w,

w;, and w, are a plurality of weighting parameters.

In some embodiments the MRI or ultrasound data sets
comprise a plurality of short-axis cardiac magnetic reso-
nance images, long-axis cardiac magnetic resonance images,
sagittal MRI images, coronal MRI images, axial MRI
images, or any combination thereof.

Some embodiments further include normalizing the MRI
or ultrasound data sets and reusing the same weighting
parameters across the entire MRI or ultrasound data set.

In some embodiments, modifying the 3D estimation with
a plurality of cardiac substructures includes:

identifying a plurality of points on a convex hull of the 3D

segmentation;

computing a centroid for the plurality of points;

calculating the radius and angle of the plurality of points

on the convex hull with respect to the centroid to
produce cylindrical coordinates for the plurality of
points on the convex hull; and

interpolating the cylindrical coordinates to produce a

closed convex curve which includes the plurality of
cardiac substructures.

In some embodiments, identifying an enclosing myocar-
dium using the 3D segmentation includes removing a por-
tion of endocardium of the cardiac structure from the 3D
segmentation and refilling the 3D estimation with a color
representing the myocardium of the cardiac structure in its
place as the distance from the centroid is increased.

In some embodiments, generating a 3D segmentation of
the cardiac structure from the MRI or ultrasound data sets
includes simultaneously segmenting the MRI or ultrasound
data sets and reconstructing 3D images therefrom.

In some embodiments, the heart chamber is selected from
the group consisting of the left ventricle, the right ventricle,
the left atrium and the right atrium.

In some embodiments, modifying the 3D segmentation by
adding a plurality of intra-chamber structures includes add-
ing papillary muscles to a reconstructed volume.

In some embodiments, the papillary muscles are in the left
ventricle.

In some embodiments, a 3D contour of the heart chamber
is non-covex, wherein a line connecting any two points
inside the contour is not necessarily inside the contour, the
method including identifying points on a convex hull of a
contour, computing a centroid value by averaging over all
the points, wherein the centroid point is used as a center of
cylindrical coordinates and a radius and angle of all points
on the convex hull are calculated based on a new coordinate
system, wherein a new set of points constructs a closed
convex curve that best approximates the non-convex con-
tour.

Some embodiments include further extracting the enclos-
ing myocardium from the rest of the 3D segmentation of the
heart chamber.

Some embodiments include calculating a volume of the
heart chamber.

Some embodiments relate to a computer readable medium
containing software instructions for preforming the methods
disclosed herein.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1: Three steps (phases) of the segmentation method:
Step 1 segments the endocardial layer of a cardiac chamber;
Step 2 incorporates intra-chamber structures; Step 3 defines
the enclosing myocardium.
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FIG. 2: Illustration of the left ventricular contour evolu-
tion: (a) in early iteration; (b) mid iteration; and (c) final
iteration of gradient descent algorithm.

FIG. 3: (A) shows a 2D cross-section of first phase
segmentation while (B) shows the convex hull of the seg-
mentation, which includes the papillary muscles (red
curves). The blue dots on the LV border specify the convex
hull. The red curve illustrates the output of linear interpo-
lation of the blue points in the cylindrical coordinates.

FIG. 4: (A) The 3D segmentation of the left ventricle prior
to phase 2, vs. (B) after phase 2 (convex hull interpolation).
This figure shows how the papillary muscles are incorpo-
rated using the convex hull interpolation. Two cross-sections
with and without papillary muscles are provided for better
clarification.

FIG. 5: A cross-section of 3D segmentation procedure
during phase III: (A) is a result of phase II; (B) removing the
intra-chamber area; (C) refilling with myocardium; (D)
white line shows enclosing left ventricle with all of its
contents (two-chamber view).

FIG. 6: PDF estimation of histogram sample of myocar-
dium and the background using EM method.

FIG. 7: (a) Volumetric segmentation of the left ventricle;
(b) top view.

FIG. 8: (A) Top to apical view of select short axis MRI
slices of the phantom. (B) The silicone model of the left
ventricle used as a phantom in this experiment. (C) A mid
ventricle slice with the components of the phantom labeled.

FIG. 9: Accuracy of our algorithm for different patients in
York dataset.

FIG. 10: Manual segmentation by a trained operator (left)
vs. our method’s output (right) for patient 11 of York dataset.

FIG. 11: Accuracy for different patients in York dataset for
our algorithm as well as other existing algorithms. Method
1 was developed by Grosgeorge et al. (Grosgeorge D,
Petitjean C, Caudron J, Fares J, Dacher J-N. Automatic
cardiac ventricle segmentation in MR images: a validation
study. International journal of computer assisted radiology
and surgery 2011; 6(5): 573-581) and method 2 by Mule et
al. (Mule J, Bone R, Makris P, Cardot H. Segmentation and
tracking of the left ventricle in 3D MRI sequences using an
active surface model. In Computer-Based Medical Systems,
Twentieth IEEE International Symposium on; 2007. p. 257-
262) and Pluempitiwiriyawej et al. (Pluempitiwiriyawej C,
Moura J M F, Wu Y-J L, Ho C. STACS: new active contour
scheme for cardiac MR image segmentation. Medical Imag-
ing, IEEE Transactions on 2005; 24(5): 593-603).

FIG. 12: (A) The performance of our algorithm with and
without convex-hull interpolation vs. various level of addi-
tive noise for patient 29. (B) The RV F1 accuracy perfor-
mance of our segmentation algorithm versus the slice thick-
ness.

DETAILED DESCRIPTION

We have developed and tested a fast, automated 3D
segmentation tool for cardiac Magnetic Resonance Imaging
(MRI) or cardiac Ultrasound imaging. The segmentation
algorithm automatically reconstructs raw cardiac MRI or
Ultrasound data to a 3D model (i.e., direct volumetric
segmentation), without relying on any prior statistical
knowledge, making it widely applicable and useful for many
clinical applications.

To overcome limitations of previous methodologies, the
current invention utilizes emerging principles in image
processing to develop a true 3D reconstruction technique
without the need for training datasets or any user-driven
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segmentation. This was accomplished by developing an
automatic segmentation framework that exploits the benefit
of full volumetric imaging in an anatomically natural way.
Because the current method does not rely on prior statistical
knowledge, it offers dramatically more malleability than
current algorithms by being broadly applicable across dif-
fering pathologies and cardiac magnetic resonance (CMR)
imaging techniques.

Through the work described here, a fast, reliable, accurate
3D segmentation algorithm has been developed. This novel
algorithm delivers a high segmentation performance when
compared to manual segmentation and may in fact be
superior given the fact that manual segmentation has inher-
ent limitations. Additionally we show an improved perfor-
mance when compared to other segmentation algorithms.

The current method performs simultaneous segmentation
and three-dimensional reconstruction, which can also use
any standard MRI images (axial, coronal, or sagittal), along
with both short- and long-axis CMR data. Therefore, this
tool produces 3D segmentations that are considerably
smoother than those created from the currently available
tools based on multiplanar reconstruction of two-dimen-
sional segmented planes. The current method also mini-
mizes user interaction to only a single click on the chamber
of interest in one slice.

The input to the algorithm is a sequence of either short-
or long-axis CMR images, and the output is a refined point
cloud representing the cardiac chamber being segmented. A
unique feature of this algorithm is that it can accommodate
any standard sagittal, coronal, and axial MRI images, even
those not obtained as a dedicated CMR. The current algo-
rithm can additionally incorporate data from all the orthogo-
nal imaging stacks, providing a smoother and at the same
time, more anatomically accurate segmentation result. This
method is carried out over three consecutive steps; in the
first step, the algorithm generates a 3D estimation of a heart
chamber (e.g., left ventricle (LV)) using an active contour
method. In the second step, it modifies the result by adding
intra chamber structures (e.g., papillary muscles in the left
ventricle) that many automated segmentation algorithms
usually exclude from the chamber. During the final step, the
algorithm identifies the enclosing myocardium using the 3D
segmentation utilized for the first phase with some modifi-
cations. FIG. 1 shows the three steps in a cross-section of a
3D image. The three steps of the segmentation method
include step I which segments the endocardial layer of a
cardiac chamber, step 1I which incorporates intra-chamber
structures, and then step III which defines the enclosing
myocardium. Each step is further elaborated upon below.
Step I: 3D Active Contour Segmentation

3D active contours are dynamic surfaces that evolve and
move toward the object of interest and eventually lie on its
edges. To mathematically represent such a surface in a 3D
domain, we employ signed distance function (SDF) ®(v) for
all voxels v=(x,y,z) (Malladi R, Sethian J A, Vemuri B C.
Shape modeling with front propagation: A level set
approach. Pattern Analysis and Machine Intelligence, /EEE
Transactions on 1995; 17(2): 158-175). Using this function
for a closed contour returns negative values for the voxels
inside the contour and positive values for the voxels outside.
Evolution of the active contour is driven by minimizing an
energy function E(®) designed to reach its minimum when
the contour lies on the boundary of the object of interest. The
E(®) generally includes two components:

E(®)=E A P)+E (D) M
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where Eint and Eext are the internal and external energy
functions, respectively. Eint, whose minimization shrinks
the contour’s surface, plays a regularization role to control
the contour’s smoothness. Let €2 be the image domain and
1(v) denote the color intensity at voxel v. The internal energy
function for a SDF @ is given by Van Assen et al. (Van Assen
H C, Danilouchkine M G, Frangi A F, et al. SPASM: a
3D-ASM for segmentation of sparse and arbitrarily oriented
cardiac MRI data. Medical Image Analysis 2006; 10(2):286-
303):

E;(@)=w1Zv g VH(D (1)) @

where V and |+ denote gradient and absolute value opera-
tors, respectively. Moreover, H(x): R—R is the Heaviside
function with H(x)=1 for x>0 and H(x)=0 otherwise. As a
result, H(®(v)) is zero inside and 1 outside of the contour,
and thus IVH(®(v))I=1 at the border and O elsewhere. E__,
is a data-driven term that provides information about the
object boundaries and plays a role as driver. For example, for
segmentation of the left ventricle, we use the following
external energy function:

E_ (D)=wyE, +W;3E,

reg +AW,E,

geom 3

edge’

which is a combination of the region-based (B,.,), edge-
based (E,,.) and geometric terms (E,,,,,) to be introduced
shortly. w,, w,, w; and w, are the weighting parameters,
summed to 1, that must be carefully chosen for an image.
While the effect of weighting parameters can be negligible
for some object segmentation, it seems these parameters are
more sensitive in cardiac MRI segmentation. No quantita-
tive analysis or straightforward strategy currently exists to
yield the weighting parameters for segmentation. In the
current method, we often pursued a trial and error approach
to obtain these parameters. However, once the optimal
weighting parameters are found for one cardiac MRI image,
they can be used for other images as well without signifi-
cantly compromising the performance. Moreover, for these
parameters to yield better results in other images, we intro-
duced the histogram matching technique as explained in
further detail below.

The region-based term (Ereg) from the equation above
calculates how likely a voxel v is to belong to foreground or
background given its color density (Pluempitiwiriyawej C,
Moura J M F, Wu Y-J L, Ho C. STACS: new active contour
scheme for cardiac MR image segmentation. Medical Imag-
ing, IEEE Transactions on 2005; 24(5): 593-603):

Ereg=-2v q(log pU(»)|Qr)(1-H(®))+log p(I(+)|Qp)

H(®)) *
where P(*1€2;) and P(*1Q;) are foreground and background
probability distribution functions (PDF), respectively. If
they are not known a priori, they are replaced by the PDF of
inside and outside of the active contour usually modeled by
Gaussian distribution with different means and variances. As
the contour evolves, the means and variances are both
updated. Edge-based term (E,,.) detects the edges of
objects (Kass M, Witkin A, Terzopoulos D. Snakes: Active
contour models. International Journal of Computer Vision

1988: 1(4): 321-331):

E10e=2VgI(V))IVH(D)| %)

where g(I) can be any function whose minimum occurs at
the edge of the object of interest (Malladi R, Sethian J A,
Vemuri B C. Shape modeling with front propagation: A level

set approach. Pattern Analysis and Machine Intelligence,
IEEFE Transactions on 1995; 17(2): 158-175). The geometric

edge
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term (E,,,,) sets geometrical constraints on the active
contour. For instance, a symmetric constraint on the LV’S

short-axis can be defined as:

> @=xo)l - H®) ®)

vel

X (1-H©®)

vell

D =yl - H(®))

vel)

X (1-H©®)

vel)

Egeom =

A similar term has been introduced (Wang T, Han B,
Collomosse J. TouchCut: Fast image and video segmenta-
tion using single-touch interaction Computer Vision and
Image Understanding 2013; In process). This function cal-
culates the x and y spatial deviation of the geometrical center
of the active contour C from the centroid point’s x, and y,
dimensions. How the centroid point is obtained is described
in further detail below. The active contour problem seeks a
unique contour denoted by C* (or equivalently ®*), which
lies on the boundary of the object of interest. This problem
translates into the underlying minimization problem over ®:

P = argmin(Epn(®) + Eou (P)) o

for which we employ the gradient descent algorithm to
solve. Both E_,, and E, , are functionals, and their deriva-
tives, which are required for the gradient descent algorithm
are calculated using Euler-Lagrange equality (Elsgolc L.
Calculus of Variations: Courier Dover Publications 1963).
They must be computed for each voxel Ae€2, and therefore
are usually expressed as 3D matrices. In this case, the
gradient descent starts with a 3D initialization matrix for ®°
(v), veQ. To construct the initial distance function ®°, a 2D
slice from the middle of the CMR image stack is displayed
to the user requesting the user to click on a point near the
center of the left ventricle. Centered at that point, we
consider a contour ball whose respective signed distance
function forms ®°. The x and y dimensions of this point can
be also used as (x,,y,) for the geometric term.

Each iteration of the gradient descent algorithm updates
the function ® for each voxel. However, this update may not
maintain the sign distance property of ®. For this purpose,
we must frequently reinitialize (Sussman M, Smereka P,
Osher S. A level set approach for computing solutions to
incompressible two-phase flow. Journal of Computational
physics 1994; 114(1): 146-159). The final ®* yields the final
contour C*. As it is not mathematically simple to represent
a 3D contour, we use SDF function, @, which has one-to-one
mapping with C. This mapping is as follows, or given @, all
the points that have zero value specify the contour. That is,

C={veR?,®(v)=0} ®

Hence, once we find ®*, we can use this mapping to
obtain C*. FIG. 2 depicts the evolution of the LV’s 3D
contour in the first phase of our algorithm for a long-axis
axial 3D image of the LV. FIGS. 2A, 2B, and 2C show an
early iteration, a mid iteration, and a final iteration of the
gradient descent algorithm, respectively. This phase does not
include the papillary muscles within the LV volume.

The weighting parameters w,, . . . , w, play a paramount
role in achieving a desirable segmentation result. For
example, high w, favors the internal energy term that exces-
sively smoothes the shape. The optimal weights for an image
are conventionally obtained through a trial and error proce-
dure. This procedure can be tedious for a large database to
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be segmented. In that case, the weights are usually selected
based on the inspection of a few images and kept fixed for
the rest of images. However, as the characteristics of MR
images vary across the database, the optimal weights from
one image to another might be very different. For instance,
a noisy image with low contrast between chambers requires
higher w, and w, and lower w, comparing to an image with
high contrast in which lower w, results in better segmenta-
tion result. It is evident, that similar images share the same
optimal parameters. Hence, the optimal weighting param-
eters obtained for one image (i.e., reference image) can be
used for a new image as long as we find a way to make these
two images similar, or in another word normalized. We use
histogram matching as a normalizing approach for this
purpose. For a new image, we first match its signal intensity
histogram to the reference image, and then use the same
weights of reference image for the new image. The details of
histogram matching can be found in Gonzalez et al. (Gon-
zalez R C, Woods R E. Digital image processing, 2nd. SL:
Prentice Hall 2002). We observe that using the histogram
matching with fixed weights significantly improves the
performance of segmentation algorithm compared to the
case with fixed weighting parameters and no normalization.
Step 1I: Intra-Chamber Inclusion Using Convex Hull Inter-
polation

Due to the homogeneous signal intensity of intra-chamber
structures (e.g., papillary muscles in LV) and the surround-
ing myocardial tissue, many segmentation techniques
exclude these structures from the chamber. Our method
identifies these structures and adds them back to the recon-
structed volume. For example, in the LV, this modification
step applies primarily over the slices encompassing the LV
base, since the papillary muscles are thicker in that portion
compared to the apical segment of the LV.

For each 2D slice, the algorithm considers the contour
obtained from the previous phase. Due to the exclusion of
the intra-chamber structures (e.g., papillary muscles in the
LV), this contour is non-convex, meaning that the line
connecting any two points inside the contour is not neces-
sarily inside the contour. We argue that if this contour’s
convex hull can be found and the points on the convex
border can be interpolated, it should be possible to refine the
segmentation. To do so, we will first identify the points on
the contour’s convex hull, for which various algorithms
exist (Franco P. Preparata MIS. Computational Geometry,
Chapter “Convex Hulls: Basic Algorithms™: Springer:
1985). Next, given this set of points, we compute the
centroid by averaging over all the points.

This centroid point is used as the center of the cylindrical
coordinates, and the radius and angle of all points on the
convex hull are calculated based on the new coordinate
system. Letr,, 15, ..., Oy and ©,, O,, ..., O, denote the
radii and angles of these points, respectively, with ri and ®i
representing the distance and angle of ith point with regard
to the center. The ®I s are not equally spaced angles. Once
we find the cylindrical coordinates of the convex hull points,
we consider the r vs. ® scatter plot, and then fit a parabolic
curve using piece-wise interpolation so that for equally
spaced @', ©',, . . ., ®',, we have their corresponding r'|,
rs, ..., 'y, This new set of points constructs a closed
convex curve that best approximates the non-convex cham-
ber contour. This convex curve includes the intra-chamber
structures as well as seen in FIGS. 3 and 4. Specifically, FIG.
3A shows a 2D cross section of the first phase segmentation
while FIG. 3B shows the convex hull of the segmentation
which includes the papillary muscles which are denoted by
the red curves. The blue points on the LV border specitfy the
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convex hull while the red curve illustrates the output of
linear interpolation of the blue points in the cylindrical
coordinates. The effect of this modification on LV volume is
shown in FIG. 4, in the right panel, which provides a more
accurate representation of LV geometry. Specifically, FIG.
4 A shows the 3D segmentation of the LV prior to completing
step II. FIG. 4B shows the segmentation of the LV after the
convex hull interpolation process in step Il has been com-
pleted. FIG. 4B also shows how the papillary muscles are
incorporated using the convex hull interpolation.

Step I1I: Myocardial Segmentation

This step extracts the enclosing myocardium (as the
foreground) from the rest of the CMR image. We follow the
3D segmentation method discussed in step 1 with some
image manipulation and slight changes in external energy
functions. Once the enclosing chamber is segmented (as in
step 1) and its boundaries are detected from the first phase,
the algorithm removes the endocardium and refills it with
the color of the myocardium, which surrounds the chamber.
This process is shown in FIG. 5.

The hull of FIG. 5B shows the area that should be refilled
with the color intensity of myocardium. To do so, the
algorithm moves a few pixels away from the endocardial
boundary and then performs the refilling procedure. This
expansion from the endocardial boundary in FIG. 5A to FIG.
5B ensures that the algorithm does not overlook any endo-
cardial pixels. Additionally, it allows the segmentation to
reach to the region of the myocardium and use its color for
refilling. In order to refill, we interpolate inward using the
color densities through solving the Laplace’s equation. This
novel method of refilling produces a homogeneous region of
segmented myocardium that includes the endocardium as
seen in FIG. 5C. The white line in FIG. 5D encloses the LV
with all of its contents.

Next, the algorithm applies the same 3D segmentation
method previously discussed in step I to find the borders of
the endocardium. However, unlike the segmentation process
in step I, we have a rough estimate of the density histogram
distribution of the foreground (enclosing myocardium) and
background (the rest of the heart). We pick some sample
voxels of myocardium without user interaction. This is
possible because we know that the myocardium surrounds
the LV cavity and from the previous step we know the
location of the LV cavity. Furthermore, the approximate
thickness of the myocardium of the LV is known. Hence, to
find the myocardium (foreground) sample pixels, we simply
need to move slightly away from the convex hull points
found in step II and pick some samples of myocardium. To
find the background sample points, the focus would be on
the points far from the centroid point. We move along the
radial lines of the equally spaced angles obtained in the
previous stage to obtain both foreground and background
sample points.

Once these sample voxels are known, we find the fore-
ground and background PDFs (p(*12z) and p(*IQ5)) in a
region-based term. We consider a Gaussian mixture model
with K=3 Gaussian components N(x; m,,, 0°) to represent
p(*1Q2z) and p(*I1Qy), i.e.,
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with parameters (Q,,, m,,, 0, representing the weight, the
mean, and the variance of the i” component of foreground
(s=F) and background (s=B). These parameters can be
identified using the expected maximization (EM) method
(Dempster A P, Laird N M, Rubin D B. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the
Royal Statistical Society Series B (Methodological) 1977:1-
38) from the sample voxels obtained earlier.

FIG. 6 depicts a histogram sample of myocardium and the
background using the EM method. It also shows how the
estimated Gaussian mixture model with obtained parameters
fits this histogram. We note that once the PDF parameters are
determined, they remain fixed over all iterations and unlike
the step I procedure, there is no need to update them. The
result of this phase is shown FIG. 7, specifically with FIG.
7A showing the volumetric segmentation of the LV and FIG.
7B showing a top view of the same.

To validate our algorithm, we took a multi stage approach.
The first stage was a direct comparison to manually seg-
mented images, the second was a comparison to two other
automated techniques, and the third was a phantom experi-
ment. Finally, in the fourth stage we tested the effect changes
in contrast to noise ratio (CNR), signal to noise ratio (SNR)
and MRI slice thickness on the algorithm.

For initial validation purposes, we compared a single
volume of the object (LV) obtained from manual segmen-
tation, V,,,,,, with the data obtained from our automatic
technique V. To compute the volume, we employed
Simpson’s rule. This method needs to include the pixel-
spacing and slice-spacing of the 3D image, which was
extracted from the CMR data. We also used Dice metric
given by

2Vinan X Vauto
Vinan + Vauo

This metric is in fact the F1 metric in the context of machine
learning. Our algorithm was examined on a CMR dataset
from the Department of Diagnostic Imaging of the Hospital
for Sick Children in Toronto, Canada, available from the
York University website.

To further test the functionality of our algorithm in an
objective manner, we compared its performance with that of
two popular automatic cardiac segmentation methods on the
York database. The first method we chose was developed by
Grosgeorge et al. (Grosgeorge D, Petitjean C, Caudron J,
Fares J, Dacher J-N. Automatic cardiac ventricle segmen-
tation in MR images: a validation study. /nternational jour-
nal of computer assisted radiology and surgery 2011; 6(5):
573-581) and the second method was developed by Mille
(Mule J, Bone R, Makris P, Cardot H. Segmentation and
tracking of the left ventricle in 3D MRI sequences using an
active surface model. In Computer-Based Medical Systems,
Twentieth IEEE International Symposium on; 2007. p. 257-
262) and Pluempitiwiriyawej (Pluempitiwiriyawej C, Moura
JMF, WuY-JL, Ho C. STACS: new active contour scheme
for cardiac MR image segmentation. Medical Imaging,
IEEE Transactions on 2005; 24(5): 593-603). Grosgeorge’s
method employs an active model without either an edge
term or a geometric term. Moreover, the same variance is
assumed for the foreground (LV) and background (rest of the
CMR image) probability distribution functions. Our method
differs by considering the foreground and background as
belonging to two different texture regions, thus adopting
different variances, which we feel is more appropriate. Mille
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(supra) and Pluempitiwiriyawej (supra) developed similar
methods. Both methods consider an edge-based term and a
region-based term but not a geometric term. Pluempitiwiri-
yawe] (supra) assumes a general geometry-based term,
which it is not applicable here. Neither of the methods used
for comparison employ histogram matching or convex-hull
interpolation.

In order to estimate the absolute accuracy of our segmen-
tation method, a phantom was constructed with a known
volume. The phantom is a simulation of a human left
ventricle including an inlet and an outlet as seen in FIG. 8.
FIG. 8A shows a top to apical view of select short axis MRI
slices of the phantom. FIG. 8B illustrates the silicone model
of'the LV used as a phantom in the experiment. Finally, FIG.
8C shows a mid ventricle slice with the components of the
phantom labeled. It is composed of transparent silicone
rubber and shaped according to molds of a human left
ventricle in the systolic state. Our phantom was filled with
330 mL of water mixed with 2 mL of gadolinium, then held
in a Styrofoam mold to keep it in place inside the MR
scanner. The phantom was imaged on a Phillips Medical
System Achieva 3T scanner with a breast coil. The image
dimensions were 512x512 and 2D images were acquired at
slice thicknesses and x and y spacing, respectively, of 1 mm,
0.234 and 0.235 mm. FIG. 8 is a composite image of the
phantom and the corresponding MR images. After obtaining
the 3D segmentation of the phantom, we used Simpson’s
rule to obtain the volume and compare it to the known
phantom volume of 332 ml. Examining the effects of
changes in CNR and SNR was accomplished by introducing
additive noise to one of the available MRI dataset (in this
example, we choose patient 29 of the York database) and
examined how the algorithm’s performance changes as CNR
and SNR decrease. Patient 29 was chosen as this study was
of very high quality and thus a considerable amount of noise
could be added before the study was uninterpretable.

To measure the effect of MRI slice thickness on our
algorithm, we took the same dataset (i.e., #29) and per-
formed a segmentation of the right ventricle using the
original slice thickness of 1.6 mm. To account for changes
in slice thickness, we then repeated the segmentation only
considering a subset of slices; first only utilized every other
slice in the stack thus the effective slice thickness was twice
the original slice thickness, i.e., 3.2 mm. This procedure was
repeated using every third slice (slice thickness 4.8 mm),
then every fourth slice (slice thickness 6.4 mm), etc. The
segmentation algorithm was applied on all these stacks, and
the F1 accuracy performances were compared.

In segmenting the left ventricle, we achieved between
80% to 90% accuracy in estimating the LV volume in 13 of
the cases when compared to the supplied manual segmen-
tation volumes, and in only 5 cases did our estimate fell
below 70%. FI1G. 9 depicts the accuracy (dice metric) of our
method both with and without convex-hull interpolation
versus the patient’s manually segmented volume. We
observe that the convex hull interpolation improves the
accuracy by almost 10%. With this improvement, our results
are very accurate considering that our segmentation method
relies on no training data set.

As the FIG. 9 shows, our algorithm performs robustly for
almost all 33 subjects of York database except for patient
#32 whose segmentation result was suboptimal. The reason
for the inferior performance in this one particular case was
likely due to the very poor nature of the study. This study had
a very low CNR and SNR, which results in unclear borders
that in turn causes contour leakage and poor segmentation
performance.
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FIG. 10 illustrates that a 3D model of the left ventricle
obtained from our method looks much smoother than the
manual segmentation result provided by the challenge orga-
nizer that was utilized as the gold standard. As seen in FIG.
10, the left panel shows manual segmentation by a trained
operator while the right panel shows the current method’s
output for patient #11 of the York dataset. This may indicate
that our algorithm is far more accurate compared to the
presented data, not because smoothness inherently implies
accuracy, but because there are obvious discontinuities in the
manual segmentation that misrepresent the shape of the left
ventricle. The manual segmentation is inherently inaccurate,
and several studies have shown that manual segmentation
can be grossly imprecise with a low level of reproducibility
(Kadir K A, Payne A, Soraghan J J, Berry C. Automatic left
ventricle segmentation in T2 weighted CMR images. In
Image Processing and Communications Challenges 2:
Springer; 2010. p. 247-254; Sardanelli F, Quarenghi M, Di
Leo G, Boccaccini L, Schiavi A. Segmentation of cardiac
cine MR images of left and right ventricles: interactive
semiautomated methods and manual contouring by two
readers with different education and experience. Journal of
Magnetic Resonance Imaging 2008; 27(4): 785-792).

In FIG. 11 we have depicted the F1 accuracy of our
algorithm compared to the other two methods described
above for patients from the York database. Our algorithm
outperforms the pre-existing algorithms (Grosgeorge D,
Petitjean C, Caudron J, Fares J, Dacher J-N. Automatic
cardiac ventricle segmentation in MR images: a validation
study. International journal of computer assisted radiology
and surgery 2011; 6(5): 573-581; Mule J, Bone R, Makris P,
Cardot H. Segmentation and tracking of the left ventricle in
3D MRI sequences using an active surface model. In Com-
puter-Based Medical Systems, Twentieth IEEE International
Symposium on; 2007. p. 257-262; and Pluempitiwiriyawej
C, Moura ] M F, Wu Y-] L, Ho C. STACS: new active
contour scheme for cardiac MR image segmentation. Medi-
cal Imaging, IEEE Transactions on 2005; 24(5): 593-603) in
almost every case, with substantial improvement in most
cases.

As mentioned previously, we conducted a reproducibility
study on an LV phantom with a known volume of 332 mL.
We independently ran the algorithm 10 times, each instance
with different randomly distributed initial point. We set the
termination condition of algorithm to 700 iterations or less
than 107*% change in each iteration. Given these conditions,
the 3D results took roughly 2 minutes to generate. Our
algorithm returned values between 325 ml. and 364 mL with
a mean value 0of 3452+10.5 mL. These values correspond to
an average error of 3.97%=3.16% with a maximum error of
9.63% produced by the value of 364 mL which was some-
what of an outlier.

FIG. 12A depicts a plot of the performance of our
algorithm with and without convex hull interpolation as a
function of various levels of additive noise. Predictably,
performance drops as the level of noise increases, or
inversely, when the SNR or CNR decreases. However, the
performance stays relatively constant until more than -20
dB of added noise, indicating the algorithm is robust. It must
be noted that it is not generally straightforward to report an
operating CNR or SNR for these type of studies. The reason
is that there are other parameters involved in the perfor-
mance, directly correlated with CNR, such as SNR, the
weighting parameters, or initialization of our algorithm that
makes it hard to give a number for operating CNR. Finally,
the introduction of significant noise (>-10 dB) did make the
performance of the algorithm considerably decline; how-
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ever, that degree of noise would likely render a study
uninterpretable regardless of the method of segmentation.

FIG. 12B also depicts the F1 accuracy performance
versus the slice thickness for RV segmentation. As expected,
the performance drops as the slice thickness increases and
the gap between two slices widens so that 30% drop is
observed once the gap increases by the factor of 3.

Magnetic resonance imaging has been a mainstay in
clinical practice for some time. Initially used to primarily
image the stationary organs, techniques such as gating and
respiratory motion suppression have improved imaging
quality to the point where MR imaging has become a very
useful tool for the diagnosis of a host of cardiovascular
pathologies (Groves E M, Bireley W, Dill K, Carroll T J,
Carr J C. Quantitative analysis of ECG gated high-resolution
contrast-enhanced MR angiography of the thoracic aorta.
American Journal of Roentgenology 2007; 188(2): 522-
528). As discussed above, obtaining an accurate segmenta-
tion in CMR to determine relevant clinical information is
critical, and currently due to the heavy reliance on manual
segmentation, results can be inaccurate with a high intra-
observer viability (Janik M, Cham M D, Ross M 1, et al.
Effects of papillary muscles and trabeculae on left ventricu-
lar quantification: increased impact of methodological vari-
ability in patients with left ventricular hypertrophy. Journal
of hypertension 2008; 26(8):1677-1685). There is currently
a paucity of automated segmentation techniques and those
that do exist have significant limitations.

The current automated segmentation approach is model-
based and incorporates prior knowledge about the object that
relies on a statistical model created from a large database of
manually-segmented images. Active appearance model
(AAM) (Mitchell S C, Bosch J G, Lelieveldt B P F, van der
Geest R J, Reiber J H C, Sonka M. 3-D active appearance
models: segmentation of cardiac MR and ultrasound images.
Medical Imaging, IEEE Transactions on 2002; 21(9): 1167-
1178) and active shape model (ASM) (Van Assen H C,
Danilouchkine M G, Frangi A F, et al. SPASM: a 3D-ASM
for segmentation of sparse and arbitrarily oriented cardiac
MRI data. Medical Image Analysis 2006; 10(2):286-303;
Kaus M R, Berg J v, Weese J, Niessen W, Pekar V.
Automated segmentation of the left ventricle in cardiac
MRI. Medical Image Analysis 2004; 8(3): 245-254) are two
popular model-based techniques. Another relevant algo-
rithm (Lorenzo-Valdes M, Sanchez-Ortiz G, Mohiaddin R,
Rueckert D. Segmentation of 4D Cardiac MR Images Using
a Probabilistic Atlas and the EM Algorithm. In Medical
Image Computing and Computer-Assisted Intervention-
MICCAI 2003; 2003. p. 440-450) uses the expectation
maximization (EM) algorithm to make a cardiac 4D proba-
bilistic atlas, which computes the probabilities that a voxel
belongs to a certain region in the heart. On that basis, others
(Ulen J, Strandmark P, Kahl F. An Efficient Optimization
Framework for Multi-Region Segmentation based on
Lagrangian Duality. IEEE transactions on medical imaging
2012) utilize focusing on a set of 2D CMR images, devel-
oped a multi-region segmentation model that maps the
segmentation problem to a max flow-mm cut problem in
graph theory.

Overall, the model-based approaches demonstrate
adequate segmentation performance once the dataset is
sufficiently large (Bresson X, Vandergheynst P, Thiran J-P. A
variational model for object segmentation using boundary
information and shape prior driven by the Mumford Shah
functional. International Journal of Computer Vision 2006;
68(2): 145-162). Small datasets incur a large bias to the
segmentation, making these methods ineffective when the
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heart shape is outside the learning set, which is likely to
occur in the case of cardiovascular diseases since the learn-
ing sets are primarily composed of normal images. Yet
another challenge is to obtain large segmented datasets,
which must be addressed using model-based approaches.
Therefore, it is believed that model-based methods are not
feasible, as they are likely to result in significant error if the
algorithm is applied to cases beyond the original dataset
(Bresson et al. (supra)). Another limitation of model-based
algorithms is that the training data must be in the same
format as the test data; for example, if the training data are
constructed using short-axis CMR images, they cannot be
used for long-axis image segmentation.

In order to progress beyond the statistical model, several
other approaches have been taken such as thresholding
(Goshtasby A, Turner D A. Segmentation of cardiac cine
MR images for extraction of right and left ventricular
chambers. Medical Imaging, IEEE Transactions on 1995;
14: 56-64), pixel classification (Pednekar A, Kurkure U,
Muthupillai R, Flamm S, Kakadiaris I A. Automated left
ventricular segmentation in cardiac MRI. Biomedical Engi-
neering, IEEE Transactions on 2006; 53(7): 1425-1428;
Lynch M, Ghita O, Whelan P F. Automatic segmentation of
the left ventricle cavity and myocardium in MRI data.
Computers in Biology and Medicine 2006; 36(4): 389-407)
and active contour (Xu C, Pham D L, Prince J L. Image
segmentation using deformable models. Handbook of medi-
cal imaging 2000; 2:129-174; Grosgeorge D, Petitjean C,
Caudron I, Fares I, Dacher J-N. Automatic cardiac ventricle
segmentation in MR images: a validation study. Interna-
tional journal of computer assisted radiology and surgery
2011; 6(5): 573-581). Others have developed an algorithm
for automated segmentation of left ventricle known as
(LV-METRIC) (Codella N C, Weinsaft J] W, Cham M D,
Janik M, Prince M R, Wang Y. Left ventricle: automated
segmentation by using myocardial effusion threshold reduc-
tion and intravoxel computation at MR imaging. Radiology
2008; 248(3): 1004). This method estimates the mean and
standard deviation of LV and myocardium signal intensities
through region-growing method and calculate the volume of
LV by selecting an appropriate threshold. A clinical valida-
tion study was conducted on this method (Codella N C,
Cham M D, Wong R, et al. Rapid and accurate left ven-
tricular chamber quantification using a novel CMR segmen-
tation algorithm: a clinical validation study. Journal of
Magnetic Resonance Imaging 2010; 31(4): 845-853). While
this method results in a good performance in calculating
volume, it does not guarantee the object coherency and the
result may have holes. These issues are addressed in active
contour methods. Active contours are curves or surfaces that
evolve and move toward the object of interest driven by two
forces: one internal and the other external. While the internal
force attempts to keep the contour smooth during evolution,
the external force is responsible for stopping the contour
around the object of interest. The internal force is a function
of the contour itself, in contrast to the external forces, which
are obtained from the image data. Although most methods
assume a common internal force, their external forces differ.
For instance, several investigators have adopted the edge-
based external force, defined as the gradient of image that
stops the contour at the edges (Xu C, Pham D L, Prince J L.
Image segmentation using deformable models. Handbook of
medical imaging 2000; 2:129-174; El Berbari R, Bloch 1,
Redheuil A, et al. An automated myocardial segmentation in
cardiac MRI. Engineering in Medicine and Biology Society,
29th Annual International Conference of the IEEE; 2007. p.
4508-4511; and Mora M, Tauber C, Batatia H. 2D local heart
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motion estimation using level sets and hierarchical
B-splines. In Computers in Cardiology,; 2006. p. 513-516).
The drawback of such methods is that since the low contrast
between neighboring anatomic structures causes CMR
images to have poorly-defined borders, these methods’
stopping conditions may fail to work properly when stop-
ping the contour.

To address this issue, other groups have employed a
region-based approach (Grosgeorge D, Petitjean C, Caudron
J, Fares I, Dacher J-N. Automatic cardiac ventricle segmen-
tation in MR images: a validation study. /nternational jour-
nal of computer assisted radiology and surgery 2011; 6(5):
573-581; Mule J, Bone R, Makris P, Cardot H. Segmentation
and tracking of the left ventricle in 3D MRI sequences using
an active surface model. In Computer-Based Medical Sys-
tems, Twentieth IEEE International Symposium on; 2007. p.
257-262; and Chan T F, Vese L A. Active contours without
edges. Image Processing, IEEE Tramsactions on 2001;
10(2): 266-277) for CMR images and shown to offer more
robustness. Others (Pluempitiwiriyawej C, Moura J M F, Wu
Y-JI L, Ho C. STACS: new active contour scheme for cardiac
MR image segmentation. Medical Imaging, IEEE Transac-
tions on 2005; 24(5): 593-603) have considered a linear
combination of the region-based and edge-based forces and
proposed an annealing schedule to balance these factors’
weight in their model. The current invention is a 3D version
of this concept for the left ventricle (LV) and myocardial
segmentation. To improve the model’s robustness, we also
incorporate geometrical constraints (Wang T, Han B, Col-
lomosse J. TouchCut: Fast image and video segmentation
using single-touch interaction Computer Vision and Image
Understanding 2013; In process).

Through rigorous calculation, the LV chamber and myo-
cardium were accurately segmented in 3D for thirty three
MRI datasets. Our method is robust and demonstrated a high
segmentation performance when compared to manual seg-
mentation. The reproducibility study on a left ventricle
phantom with a known volume resulted in an average error
of 3.97%=+3.16%.

We have successfully developed a novel 3D segmentation
algorithm that can reconstruct a cardiac chambers’ morphol-
ogy for use in quantitative analyses. The algorithm is widely
applicable, is fast and results in reproducible data.

Since our algorithm uses no manual segmenting, it is
highly reproducible, while also not requiring a training data
set, or any user driven segmentation to make it fully 3D. As
a result, when compared to previously developed technolo-
gies, we showed a high level of performance without the use
of a ftraining data set that was utilized in many
other\algorithms. Our method demonstrates much less per-
formance variation and shows more robustness in the results
compared to others. This consistency is mainly due to the
geometric term considered in our external force. Addition-
ally, application of a convex hull interpolation and histogram
matching are critical components of our algorithm.

Automated segmentation algorithms generally utilize
assumptions that may be inaccurate across heterogeneous
populations. Here we have progressed beyond the need for
such limitations and thus have described an algorithm which
does not rely upon a training data set. With more accurate,
reproducible segmentation results, CMR can be relied upon
more heavily both in the initial diagnosis of cardiovascular
disease, but also in the monitoring of progression which is
critical in management.

Many alterations and modifications may be made by those
having ordinary skill in the art without departing from the
spirit and scope of the invention. Therefore, it must be
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understood that the illustrated embodiment has been set
forth only for the purposes of example and that it should not
be taken as limiting the invention as defined by the following
invention and its various embodiments.

The words used in this specification to describe the
invention and its, various embodiments are to be understood
not only in the sense of their commonly defined meanings,
but to include by special definition in this specification
structure, material or acts beyond the scope of the commonly
defined meanings. Thus if an element can be understood in
the context of this specification as including more than one
meaning, then its use in must be understood as being generic
to all possible meanings supported by the specification and
by the word itself.

The definitions of the words or elements of the following
invention and its various embodiments are, therefore,
defined in this specification to include not only the combi-
nation of elements which are literally set forth, but all
equivalent structure, material or acts for performing sub-
stantially the same function in substantially the same way to
obtain substantially the same result. In this sense it is
therefore contemplated that an equivalent substitution of two
or more elements may be made for any one of the elements
in the invention and its various embodiments below or that
a single element may be substituted for two or more ele-
ments in a claim.

Insubstantial changes from the claimed subject matter as
viewed by a person with ordinary skill in the art, now known
or later devised, are expressly contemplated as being equiva-
lently within the scope of the invention and its various
embodiments. Therefore, obvious substitutions now or later
known to one with ordinary skill in the art are defined to be
within the scope of the defined elements.

It is understood that the examples and embodiments
described herein are for illustrative purposes only and that
various modifications or changes in light thereof will be
suggested to persons skilled in the art and are to be included
within the spirit and purview of this application and scope of
any appended claims. All figures, tables, and appendices, as
well as publications, patents, and patent applications, cited
herein are hereby incorporated by reference in their entirety
for all purposes.

What is claimed is:

1. A method of automatically producing a three-dimen-
sional (3D) segmentation of a heart chamber, the method
comprising:

(a) obtaining data sets from cardiac magnetic resonance

imaging (MRI) or ultrasound,

(b) generating a 3D segmentation of the heart chamber
from the data sets using an active contour method
comprising minimizing an energy function, E(®), when
a contour lies on a boundary of the heart chamber,
wherein E(®) is defined as

E(D)=E; { DIH+E o D),

wherein E,,, is the internal energy function and E__, is the
external energy function of the heart chamber in a 3D
domain,

(c) modifying the 3D segmentation by adding a plurality

of intra-chamber structures; and

(d) identifying an enclosing myocardium using the 3D

segmentation generated in step (b).

2. The method of claim 1, where minimizing the energy
function, E(®) comprises using an external energy function,
E,. (®), defined as

E_ (D)=wyE, +W;3E,
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wherein E,,, is a region-based term, B, is an edge-
based term, B, is a geometric term, and where w,

w;, and w, are a plurality of weighting parameters.

3. The method of claim 2, further comprising normalizing
the MRI or ultrasound data sets and reusing the same
weighting parameters across the entire MRI or ultrasound
data set.

4. The method of claim 1, where the MRI or ultrasound
data sets comprise short-axis cardiac magnetic resonance
images, long-axis cardiac magnetic resonance images, sag-
ittal MRI images, coronal MRI images, axial MRI images,
or any combination thereof.

5. The method of claim 1, where modifying the 3D
segmentation by adding a plurality of cardiac substructures
comprises:

identifying a plurality of points on a convex hull of the 3D

segmentation;

computing a centroid for the plurality of points;

calculating the radius and angle of the plurality of points

on the convex hull with respect to the centroid to
produce cylindrical coordinates for the plurality of
points on the convex hull; and

interpolating the cylindrical coordinates to produce a

closed convex curve which includes the plurality of
cardiac substructures.

6. The method of claim 5, where identifying an enclosing
myocardium using the 3D segmentation comprises remov-
ing a portion of endocardium of the cardiac structure from
the 3D segmentation and refilling the 3D segmentation with
a pattern representing the myocardium of the cardiac struc-
ture in its place as the distance from the centroid is
increased.
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7. The method of claim 1, where generating a 3D seg-
mentation of the cardiac structure from the MRI or ultra-
sound data sets comprises simultaneously segmenting the
MRI or ultrasound data sets and reconstructing 3D images
therefrom.

8. The method of claim 1, wherein said heart chamber is
selected from the group consisting of the left ventricle, the
right ventricle, the left atrium and the right atrium.

9. The method of claim 1, wherein said modifying the 3D
segmentation by adding a plurality of intra-chamber struc-
tures comprises adding papillary muscles to a reconstructed
volume.

10. The method of claim 1, wherein a 3D contour of the
heart chamber is non-convex, wherein a line connecting any
two points inside the contour is not necessarily inside the
contour, the method comprising identifying points on a
convex hull of a contour, computing a centroid value by
averaging over all the points, wherein the centroid point is
used as a center of cylindrical coordinates and a radius and
angle of all points on the convex hull are calculated based on
a new coordinate system, wherein a new set of points
constructs a closed convex curve that best approximates the
non-convex contour.

11. The method of claim 1, further comprising extracting
the enclosing myocardium from the rest of the 3D segmen-
tation of the heart chamber.

12. The method of claim 1, further comprising calculating
a volume of the heart chamber.

13. A non-transitory computer readable medium contain-
ing software instructions for preforming the method of claim
1.



